首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   14篇
  2022年   2篇
  2021年   10篇
  2019年   5篇
  2018年   4篇
  2017年   11篇
  2016年   5篇
  2015年   9篇
  2014年   12篇
  2013年   9篇
  2012年   19篇
  2011年   21篇
  2010年   16篇
  2009年   17篇
  2008年   15篇
  2007年   18篇
  2006年   19篇
  2005年   8篇
  2004年   11篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
21.

Background

Effective mating between laboratory-reared males and wild females is paramount to the success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically modified male mosquitoes. However mosquito colonization and laboratory maintenance have the potential to negatively affect male genotypic and phenotypic quality through inbreeding and selection, which in turn can decrease male mating competitiveness in the field. To date, very little is known about the impact of those evolutionary forces on the reproductive biology of mosquito colonies and how they ultimately affect male reproductive fitness.

Methods

Here several male reproductive physiological traits likely to be affected by inbreeding and selection following colonization and laboratory rearing were examined. Sperm length, and accessory gland and testes size were compared in male progeny from field-collected females and laboratory strains of Anopheles gambiae sensu stricto colonized from one to over 25 years ago. These traits were also compared in the parental and sequentially derived, genetically modified strains produced using a two-phase genetic transformation system. Finally, genetic crosses were performed between strains in order to distinguish the effects of inbreeding and selection on reproductive traits.

Results

Sperm length was found to steadily decrease with the age of mosquito colonies but was recovered in refreshed strains and crosses between inbred strains therefore incriminating inbreeding costs. In contrast, testes size progressively increased with colony age, whilst accessory gland size quickly decreased in males from colonies of all ages. The lack of heterosis in response to crossing and strain refreshing in the latter two reproductive traits suggests selection for insectary conditions.

Conclusions

These results show that inbreeding and selection differentially affect reproductive traits in laboratory strains overtime and that heterotic ‘supermales’ could be used to rescue some male reproductive characteristics. Further experiments are needed to establish the exact relationship between sperm length, accessory gland and testes size, and male reproductive success in the laboratory and field settings.  相似文献   
22.

Background  

Anecdotal reports and a few scientific publications suggest that flyovers of helicopters at low altitude may elicit fear- or anxiety-related behavioral reactions in grazing feral and farm animals. We investigated the behavioral and physiological stress reactions of five individually housed dairy goats to different acoustic and visual stimuli from helicopters and to combinations of these stimuli under controlled environmental (indoor) conditions. The visual stimuli were helicopter animations projected on a large screen in front of the enclosures of the goats. Acoustic and visual stimuli of a tractor were also presented. On the final day of the study the goats were exposed to two flyovers (altitude 50 m and 75 m) of a Chinook helicopter while grazing in a pasture. Salivary cortisol, behavior, and heart rate of the goats were registered before, during and after stimulus presentations.  相似文献   
23.
24.
Increasing evidence suggests the existence of osteoclast diversity. Here we investigated whether precursors obtained from marrow of the mandibula or long bone could give rise to phenotypically different osteoclasts. Formation of multinucleated cells was assessed after culturing mouse marrow cells of the two bone types with macrophage colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL) for up to 10 days on plastic, bone or dentin. Two times more osteoclasts formed from long bone marrow cells on bone compared to dentin, whereas higher numbers of jaw osteoclasts formed on dentin. Resorption of dentin or bone was similar for osteoclasts formed from both types of precursors. In contrast to jaw marrow derived osteoclasts, long bone osteoclasts predominantly had a multi-compartmented shape, with at least two nuclei containing compartments per cell. Osteoclasts on bone contained two times more actin rings than osteoclasts on dentin, regardless of their precursor origin. However, the area per osteoclast covered by actin rings was similar (20%) for both substrates. This study suggests that marrow cells obtained from different bones give rise to different osteoclasts. The substrate on which the osteoclasts are generated plays a role in steering their formation rather than their resorption.  相似文献   
25.
C-type lectins dectin-1 and dectin-2 on dendritic cells elicit protective immunity against fungal infections through induction of T(H)1 and T(H)-17 cellular responses. Fungal recognition by dectin-1 on human dendritic cells engages the CARD9-Bcl10-Malt1 module to activate NF-κB. Here we demonstrate that Malt1 recruitment is pivotal to T(H)-17 immunity by selective activation of NF-κB subunit c-Rel, which induces expression of T(H)-17-polarizing cytokines IL-1β and IL-23p19. Malt1 inhibition abrogates c-Rel activation and T(H)-17 immunity to Candida species. We found that Malt1-mediated activation of c-Rel is similarly essential to induction of T(H)-17-polarizing cytokines by dectin-2. Whereas dectin-1 activates all NF-κB subunits, dectin-2 selectively activates c-Rel, signifying a specialized T(H)-17-enhancing function for dectin-2 in anti-fungal immunity by human dendritic cells. Thus, dectin-1 and dectin-2 control adaptive T(H)-17 immunity to fungi via Malt1-dependent activation of c-Rel.  相似文献   
26.
27.
The inward rectifier current generated by Kir2.1 ion channel proteins is primarily responsible for the stable resting membrane potential in various excitable cell types, like neurons and myocytes. Tight regulation of Kir2.1 functioning prevents premature action potential formation and ensures optimal repolarization times. While Kir2.1 forward trafficking has been addressed in a number of studies, its degradation pathways are thus far unknown. Using three different lysosomal inhibitors, NH4Cl, chloroquine and leupeptin, we now demonstrate involvement of the lysosomal degradation pathway in Kir2.1 breakdown. Upon application of the inhibitors, increased steady state protein levels are detectable within few hours coinciding with intracellular granular Kir2.1 accumulation. Treatment for 24 h with either chloroquine or leupeptin results in increased plasmamembrane originating inward rectifier current densities, while current-voltage characteristics remain unaltered. We conclude that the lysosomal degradation pathway contributes to Kir2.1 mediated inward rectifier current regulation.  相似文献   
28.
29.
Laser microdissection has been proven a successful technique to isolate single cells or groups of cells from animal and plant tissue. Here, we demonstrate that laser microdissection is suitable to isolate subcellular parts of fungal hyphae. Dolipore septa of Rhizoctonia solani containing septal pore caps were cut by laser microdissection from sections of mycelium and collected by laser pressure catapulting. Subsequently, microdissected septa were visualised using a wheat germ agglutinin labelling of cell walls, septa and septal pore caps and scanning electron microscopy. The use of laser microdissection on fungal cells opens new ways to study subcellular fungal structures and the biochemical composition of hyphal cells.  相似文献   
30.
H(2)O is one of the most essential molecules for cellular life. Cell volume, osmolality and hydrostatic pressure are tightly controlled by multiple signaling cascades and they drive crucial cellular functions ranging from exocytosis and growth to apoptosis. Ion fluxes and cell shape restructuring induce asymmetries in osmotic potential across the plasma membrane and lead to localized hydrodynamic flow. Cells have evolved fascinating strategies to harness the potential of hydrodynamic flow to perform crucial functions. Plants exploit hydrodynamics to drive processes including gas exchange, leaf positioning, nutrient acquisition and growth. This paradigm is extended by recent work that reveals an important role for hydrodynamics in pollen tube growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号